
A ROBUST COMPRESSION SYSTEM FOR LOW BIT RATE
TELEMETRY - TEST RESULTS WITH LUNAR DATA

Khalid Sayood and Martin C . Rost
Department of Electrical Engineering

University of Nebraska

PROBLEM STATEMENT

The output of a Gamma Ray detector is quantized using a 14 bit A/D
converter. The number of each of the 214 or 16,384 levels occurring
in a 30 second interval is counted. In effect, a histogram of the
gamma ray events is obtained with 16,384 bins. The contents of these
bins are to be encoded without distortion and transmitted at a rate
less than or equal to 600 bits per second. Thus the contents of the
16,384 bins are to encoded using 18000 bits. The encoder should be
simple to implement and require only a minimal amount of buffering.

PROPOSED SYSTEM

Encoder

The contents of the bins are treated as a sequence for purposes of
encoding. The proposed system encoder can be divided into two stages
(three if a Huffman coding option is used. The first
stage is a leaky differencer whose input/output relationship is given

See Figure 1.)

by

where [t] is the largest integer less than or equal to t. The reason
for using a leaky differencer is to allow the effect of errors to die
out with time.

237

The output of the differencer forms the input for the second stage
which is a modified runlength encoder. The encoder codebook contains
six different types of symbols.

Mn - symbol used to represent negative differencer
output values, for example, the differencer
output values -1, -2,...,-n, are represented
by the symbols M1, M2, ..., Mn, respectively.

Pn - symbols used to represent positive differencer values,

they are coded similar to the Mn symbols. Thus a
differencer output value of +3 would be represented by the
symbol P3.

Zn - symbols used to represent string of zeros of
length n. Since the number of Z-symbols is
kept small, these symbols represent I1short1l
string of zeros (0-strings), while the SO- and
S1-symbols to be introduced later represent
lllongll 0-strings.

BR - In the encoding scheme that follows, there
will sometimes be a need to specify the end of
a sequence. The BR or break symbol is used
for this purpose.

SOXX - symbol used to represent long 0-strings. The
SO symbol indicates that a 0-string is being
represented while X stands for a four bit
word. XX is thus an eight bit word specifying
the length of the 0-string.

SlXX - symbol used to represent long 0-strings that
are followed by a 1. It is constructed in the
same manner as the SOXX symbol.

238

Each symbol, Mn, Pn, Zn, BR, SO, and S1 is represented by a four bit
word. The number of symbols in the encoder codebook is
o (M) +o (P) +o (Z) +3 where o (M) , o (P) , and o (Z) are, respectively, the
number of negative source symbols, positive source symbols, and short
0-strings symbols to be channel coded. As each symbol is represented
by 4 bits, a total of sixteen encoder symbols are possible. In our
coding scheme, o(M) is set to 2, o (Z) to 6 , and o(P) to 5.

This means that if the differential output is -1, -2, 1, 2, 3, 4, 5 or
a string of zeros of length five or less, it can be represented by a
single symbol. What if the differential output is a positive value
larger than five or a negative value less than -2? In such cases the
largest (in magnitude) Mn or Pn symbol is used as a concatenation
symbol. A s an example, consider encoding the value 18.

Since o(P) is 5, the largest positive value that can be coded with a
single symbol is 5. If P5 is also used as a concatenation symbol,
larger source values can be coded. In this case, 18 can be coded as
P5 P5 P5 P3. The receiver accumulates a total f o r all the P5 symbols
consecutively received until a non-P5 symbol is received. This symbol
is used to complete the current source value. In this case, P3
indicates the source value is 18.

In the case where the source value is a multiple of the maximum P-
symbol value some confusion can occur in the decoding process.
Consider the coding of the source values 10 followed by 8 . In this
case, four source symbols are required to code these values but, the
receiver decodes them as a 18. To overcome this problem the break
symbol (BR) is used. This symbol carries no data value but, is used
by the receiver to prematurely stop the accumulation of P-symbols.
Specifically, 10 and 8 are coded as P5 P5 BR P5 P3. The receiver
stops constructing the first source value when the BR is encountered
and start constructing the next with the following P5 symbol.

239

If a source value to coded is negative, the above procedure is used
with the allowed M-symbols along with the BR symbol to prevent
incorrect receiver decoding. For example, -3 would be encoded as M2M1
and -4 would be encoded as M2M2BR.
In this particular application, the tails of a given signal frame
contain long runs of zeros that are separated by non-zero data
values. It is very likely that these 0-string separators take the
value 1. Thus, it is beneficial to code these runs with one of the
following two symbols, each of which is three code words in length:

SO x y a 0-string of length xy (base 16).

S1 x y a 0-string of length xy (base 16) followed a 1.

For example, the symbol, SO 4 0, represents a string of 64 Os, and the
symbol, S1 4 0, represents a string of 64 Os followed by a 1. If the
separating data value is not 1, then additional source symbols follow
the SO symbol to complete the description of its value. The maximum
length of 0-string that can be coded with this type symbol is 255 (FF
base 16). If a string of length greater than 255 is encountered, a
concatenation rule must be applied.

Since the symbols SO 0 0 and S1 0 0 are not assigned, they are used as
0-string concatenation symbols. They are used to indicate the fact
that a 0-string is to be built whose length is greater than 255. Each
time one of these symbols is used it is assumed that a 0-string of
length greater than 255 is being coded, and additional information is
to be provided on its length by the following symbols. A 0-string is
terminated if the last SO-symbol indicates a length value other than

I 00 for xy.

For example, if a 0-string of length 300 is followed by a 1, two
source symbols (six channel words) are required to code the string: S1
0 0 S1 2 D. The value for xy of the first symbol is 00, so the 0-
string is continued using the following S1-symbol(s). In this way, 0-

240

strings of arbitrary length can be constructed by concatenating as
many S1 0 0 symbols as needed to bring the overall reconstructed 0-
string length to within 255 Os of its full length. The final S1-
symbol in such a series which does not have a 0 0 length indicator
terminates the 0-string concatenation process. Since the S1 symbol is
being used this 0-string is automatically followed by a 1. Consider
coding a 0-string of length 300 that is followed by a -1. Two SO-
symbols (six channel words) are required to code the 0-string, and
one M-symbol (one channel word) is required to code the -1: SO 0 0 SO
2 D M1 for a total of seven channel words.

Since the long runlength symbols require three channel words each, an
excessive amount of channel capacity can be wasted when coding short
runs of Os. As a consequence, a group of short run symbols that use
only one channel word each are used to alleviate this problem. The
identifier for these symbols is Zn (where n represents the length of
the 0-string). For example, a run of 5 Os is represented by the
symbol 25. The coding length of a short 0-string using Zn symbols
only improves the overall coding rate if the short 0-string is coded
with fewer channel bits when using the 2-symbols instead of the SO-
and S1-symbols.

Consider the following example for coding a string of 10 Os. Since
o (Z) is 6, to code this 0-string using Z-symbols takes two channel
words: Z6 2 4 . But, when coded using an SO-symbol it takes three
channel words to code this 0-string: SO 0 A . Therefore, the 2-symbol
coding is more channel efficient. Since an SO- (or S1-) symbol always
require three channel words, the only way to guarantee that short 0-
strings are coded efficiently is to set the maximum number of short Z-

symbols in a single 0-string coding to two. Thus, for an o(2) of 6,
the maximum 0-string length to be 2-symbol coded is 12.

The encoder described above has two main characteristics. First, it
has been designed for the specific task noted in the problem
statement. No claims are made regarding its suitability for other

241

tasks. The second characteristic is its simplicity. The encoding
operation requires a very small amount of computation. Furthermore,
the onboard memory requirements for buffering are minimal.

If Huffman coding is to be used, the final stage of the encoder is a
Huffman coder. This will, of course, increase the complexity of the
encoder and may make the system more vulnerable to channel errors.
Therefore, if at all possible we will avoid using a Huffman coder.

Decoder

The decoder for the proposed system consists of three stages. The
first stage of proposed system decoder is maximum A Priori Probability
(MAP) receiver(6). The MAP receiver design is based on the assumption
that the output of the encoder contains dependencies.

The MAP design criterion can be formally stated as follows: For a
discrete memoryless channel (DMC) , let the channel input alphabet be
denoted by A = {aOfa1,...,aM-1), and the channel input and output

respectively. If A = {Ai) is the set of sequences A i =

(ai,o,ai,l ,...,ai,~-l},ai,k~, then the optimum receiver (in the sense
of maximizing the probability of making a correct decision) maximizes
P[C], where

sequences by Y = (yo,yl,...,y~-1) and p = ~9of9lf*-.f9L-l~,

pic1 = zi P[CI PIP[Pl
This in turn implies that the optimum receiver maximizes P[C(P]. When
the receiver selects the output to be Ak, then P[C(P] = P[Y = Akl PI.
Thus, the optimum receiver selects the sequence Ak such that

When the channel input sequence is independent, this simplifies to the
standard MAP receiver(6). Under conditions where this is not true,
the receiver becomes a sequence estimator which maximizes the path

242

metric. Z10gP(yilpi,yi-1)(5). The path metric can be computed for a
particular system by rewriting it using the following relationship . (4)

Notice that the right hand side consists of two sets of conditional
probabilities {P[pilyi]} and (P[yilyi-1]). The first set of

conditional probabilities are the channel transition probabilities
while the second depend only on the encoder output. The two are
combined according to the above relationship to construct an M X M X M
lookup table for use in decoding. The structure of the MAP receiver
is that of the Viterbi de~oder(~r~).

The second stage of the decoder is the inverse operation of the
modified run-length encoder. The operation of this stage has already
been described in the previous section. The final stage of the
decoder is the inverse of the differential operation with an input
output relationship

Xn = Zn + [axn-l]

RESULTS

In this section we present results obtained by using the proposed
system of the previous section. Ms.\
M. Mingarelli-Armbruster of the Goddard Space Flight Center.' This
data was generated according to a Poisson distribution where the
Poisson parameter was obtained from ten hours of lunar data. Both
noisy and noiseless channel performance of the proposed system were
examined via Monte-Carlo simulation. A total of twenty, 30-second
intervals were used in the tests. The performance was compared with
the Rice algorithm (1-3) .

The data used was provided by

Before proceeding with the results, some caveats are in order. First,

2 4 3

the name Rice algorithm is a misnomer. What is ~resented(l-~) is not
an algorithm but an approach. In this approach, a suite of algorithms
is used to encode sections of the data, and the most efficient
algorithm for that particular section of data is selected. In this
way, data with very different statistical profiles can be
accommodated. Thus what is presented could more correctly be
called the Rice Universal Coding Approach (RUCA). What we compare
against here are algorithms pre~ented(l’~) as examples of the RUCA.
These algorithms were constructed for use in very general situations.
As opposed to this, the particular algorithm presented here has been
designed for a specific task. A final observation is that the encoder
presented in this paper could very easily be used as the first stage
of the RUCA. However, this would result in a rather complex encoder
and substantial increase in the need for onboard memory over the
proposed design. Therefore, if the algorithm presented in the
previous section satisfies the requirements in terms of rate and
robustness, such a step would be undesirable.

The results of the tests with both algorithms are presented in Table 1
and Table 2. The number of bits required to code twenty thirty-second
intervals and the average rate needed for both algorithms is presented
in Table 1. The second and third columns contain the total number of
bits and the rate when the Rice algorithm is used. The average rate
over twenty intervals is 719 bits per second. Columns three to six
present the results obtained by using the proposed algorithm. The
first two columns contain the results for the case where the Huffman
coder was not used while the last two columns contain the results for
when the Huffman coder formed the last stage of the encoder. The rate
without the Huffman coder averaged over twenty intervals is 595 bits
per second while the average rate when the Huffman coder is used is
522 bits per second. These results indicate that the proposed system
will satisfy the specifications (coding rate below 600 bits per
second) both when the Huffman coder is used and when it is not. As
both systems meet the target and as the inclusion of the Huffman coder
increases both the complexity and the vulnerability of the system to

244

channel noise, we elected to use the system without the Huffman coder.

Table 2 provides the performance of the algorithms under noisy channel
conditions. Three performance measures are used, namely, mean squared
error (MSE), mean absolute error (MAE), and the number of decoded
values which are in error. Note the very large difference between the
performance of the Rice algorithm and the proposed algorithm. Also,
the proposed algorithm maintains a robust performance at extremely
high error rates. In fact, under even highly adverse conditions the
mean squared error is almost constant, and the number of erroneous
decoded values is about 25% of the total. However, the performance
of the algorithms at high error rates may be irrelevant in this
particular situation. The reason being that the transmitted data will
be well protected by a channel coding scheme consisting of a Reed-
Solomon coder followed by a convolutional coder. This combination is
expected to keep the average probability of error on the coded channel
below 9 X

Finally, we examine the relative complexity and buffer requirements
for the two algorithms. The proposed algorithm can be easily realized
with a simple program implemented using a microprocessor. Based on
the memory requirements for the simulation program used in this study,
the memory needed for actual implementation should be about 1 K. The
only time buffering may be required is when a large differencer output
is encountered, and the encoder has to generate several channel
symbols for one input. Depending on the way the entire system is
implemented, the buffer requirements could range from a single symbol
buffer to perhaps a sixteen symbol buffer.

A s opposed to this, the Rice algorithm by its very nature, being a
universal coding algorithm, is quite complex. Each block of data is
encoded using a number of candidate algorithms; the algorithm which
provides the most efficient encoding is then selected. Each of the
candidate algorithms is itself relatively complex though some very
ingenious techniques are used to make subunits of one algorithm common

245

I to several candidate algorithms. Because several passes are required
to do the encoding, the buffering requirements for this approach are
substantial.

These differences in complexity are very natural based on the
different objectives of the two algorithms. The proposed system is
designed for a very specific situation while the Rice algorithm is
designed to handle general situations.

246

I TABLE 1

Coding rates with the Rice Algorithm and the Proposed Algorithm, (HC)
denotes the results for the case where the Huffman Coder was used.

RICE ALGORITHM
INTERVAL TOTAL RATE

BITS

1 21,647
2 21,385
3 21,530
4 21,562
5 21,666

I

~ ' I 6 21,424
7 21,841
8 21,630
9 21,719
10 21,568
11 21,308
12 21,509
13 21.633
14 21,822
15 21,296
16 21,701
17 21,058
18 21,312
19 21,713

I

~ 20 21,888

721.6
712.8
717.7
718.7
722.2
714.1
728.0
721.0
723.9
718.9
710.3
716.9
721.1
727.4
709.8
723.4
701.9
710.4
723.8
729.6

718.7

PROPOSED ALGORITHM
TOTAL RATE TOTAL BITS RATE
BITS (HC) (HC)

17 , 832
17.528
17 , 784
17 , 840
18 , 144
17 , 504
18 , 048
18 , 096
18,132
18,096
17 , 604
17,728

18 , 016
17 , 780

17 I 564
17 , 956
17 , 296
17 , 688
18 , 160
18,292

594.4
584.3
592.8
594.7
604.8
583.5
601.6
603.2
604.4
603.2
586.8
590.9
592.7
600.5
585.4
598.5
576.5
589.6
605.3
609.7

15,733
15,345
15,520
15,691
15,883
15,457
15,882
15,907
15,843
15,695
15,438
15,580
15,581
15 I 913
15,361
15,872
15,139
15,449
16,033
16,125

524.4
511.5
517.3
523.0
529.4
515.2
529.4
530.2
528.1
523.2
514.6
519.3
519.4
530.4
512.0
529.1
504.6
514.9
534.4
537.5

595.1 522.4

247

TABLE 2
Performance of the algorithms under noisy channel conditions.

PROBABILITY
OF ERROR

10-6
10-5
10-4
10-3
10-2

MEAN
SQUARED

ERROR
0.0760
4.07

31.49
479.22

a ,562 .a7

RICE ALGORITHM
MEAN
ABSOLUTE

ERROR
0.023
0.45
3.14
16.03
76.75

OF
DECODED

ERRORS
140

1,908
10,177
15,658
16,189

I PROBABILITY

OF ERROR
10-6
10-5
10-4
10-3
10-2

PROPOSED ALGORITHM
MEAN MEAN # OF
SQUARED ABSOLUTE DECODED

ERROR ERROR ERROR
2.4 x 10-5 1.2 x 10-5 1
0.026 0.016 218
0.17 0.14 1,287
0.78 0.28 2,944
6.81 0.71 3 , 765

SUMMARY AND CONCLUSIONS

We have presented a robust noiseless encoding scheme for encoding the
gamma ray spectroscopy data. The encoding algorithm is simple to

implement and has minimal buffering requirements. The decoder
contains error correcting capability in the form of a MAP receiver.
While the MAP receiver adds some complexity, this is limited to the
decoder. Nothing additional is needed at the encoder side for its
functioning.

248

ACKNOWLEDGMENT

This work was supported by a grant from the Goddard Space Flight
Center, Greenbelt, Maryland, under Grant NAG5-916.

REFERENCES

R. F. Rice, "Practical Universal Noiseless Coding,vw 1979 SPIE
Symposium Proceedings, Vol.\ 207, San Diego, CA, August 1979,
pp. 247-267.

R. F. Rice, "Some Practical Universal Noiseless Coding
Techniques, JPL Publication 79-22, Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA,
March 15, 1979.

R. F. Rice and Jun-Ji Lee, "Some Practical Universal
Noiseless Coding Techniques, Part 11," JPL Publication
83-17, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, March 1, 1983.

K. Sayood and J. C. Borkenhagen, Wse of Residual Redundancy
in the Design of Joint Source/Channel Coders,v1 Submitted to
IEEE Trans.\ Commun.

K. Sayood and J. D. Gibson, I'Maximurn Aposteriori Joint
Source/Channel Coding,Il Proceedings of the 22nd Annual
Conference on Information Sciences and Systems, Princeton,
New Jersey, March 1988.

J. M. Wozencraft and I. M. Jacobs, IIPrinciples of
Communication Engineering. John Wiley and Sons, Inc., New
York, 1965.

249

0
u
C
W

'0
aJ
LD
0
a
0
L
n

250

